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LIQUID CRYSTALS, 1994, VOL. 16, No. 2, 203-221 

Optical properties of frustrated 
cholesteric liquid crystals 

by P. RIBIERE, S. PIRKLt and P. OSWALD* 
Ecole Normale SupCrieure de Lyon, Laboratoire de Physique 46, 

AllCe d'Italie, 69364 Lyon Cedex 07, France 

(Received 5 April 1993; accepted 24 June 1993) 

In a previous article, we proposed a model to explain the unwinding transition in 
an electric field of a frustrated cholesteric liquid crystal sandwiched between two 
glass plates imposing a homeotropic anchoring. We found that three distinct 
solutions exist in materials of negative dielectric anisotropy: first, the homeotropic 
nematic at small thickness and small voltage, second, a translationally invariant 
configuration (TIC) at large voltage and, third, the cholesteric fingers. In this article, 
we study some optical properties of these solutions. We show first that the TIC 
rotates the polarization of light. Its 'apparent' rotatory power is calculated exactly 
and is compared with the experimental data when the TIC-nematic phase 
transition is second order. The agreement between theory and experiment is 
excellent. We show in particular that there exist discrete values of the voltage for 
which the TIC has a pure rotatory power. We then calculated the optical contrast of 
the fingers when they are observed between crossed polarizers. The agreement with 
experiment is still satisfactory, in spite of the approximate form of the director field 
chosen to describe the topology of the finger. 

1. Introduction 
Optical properties of free cholesteric liquid crystals have been studied since the 

beginning of this century [ 1-51. These studies do not apply to cholesteric liquid crystals 
in an electric field or confined between two closely spaced glass plates which strongly 
anchor the molecules, because these constraints alter the molecular organization. With 
homeotropic anchoring (i.e. when the molecules are perpendicular to the glass plates), 
the topological incompatibility between the simple helicoidal structure of the 
cholesteric and the boundary conditions leads to various molecular configurations. Let 
d be the sample thickness and p the quiescent cholesteric pitch. In a material of negative 
dielectric anisotropy E ~ ,  the molecules prefer to align perpendicularly to the electric 
field, i.e. parallel to the electrodes. Three stable configurations of the director are 
commonly observed, depending on the frustration ratio C=d/p and on the A.C. 
applied voltage V between the two electrodes limiting the sample [6]. If the sample is 
thin enough and the electric field not too large, the cholesteric unwinds completely, 
leading to a homeotropic nematic phase. In contrast, a translationally invariant 
configuration (TIC in the following) is always the final outcome when the voltage is 
sufficiently large. For intermediate voltages and thick enough samples, a periodic phase 
consisting of parallel cholesteric fingers develops (see figure 1). From these observ- 
ations, it was possible to construct an experimental phase diagram in the (C, V) 

* Author for correspondence. 
t Permanent address: University of Chemical Technology, 532 10 Pardubice, Czech 

Republic. 

0267-8292/94 $1000 0 1994 Taylor & Francis Ltd. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
5
2
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



204 P. Ribiere ct al 

parameter plane (see figure 2). The material chosen was a mixture of the chiraI materiai 
S8 I I (0.792 per cent wt.) and the nematic ZLI 2806 (both from E. Merck). In order to 
explain these observations, we used a two-order-parameter model [ 6 ]  which allowed us 
to re-compute the main characteristics of the experimental phase diagram. Thi5 model 
is nevertheless approximate and is based on a topological construction of the solutions 
on the unit sphere, a method that was first proposed for cholesterics by Lequeux /7]. To 
lest the relevance of this geometrical approach, we have calculated some optical 
properties of the molecular configurations used theoretically to determine the phase 
diagrams. Thcn, wc have compared these predictions with experiment. 

The organization of the article is as follows. In $ 2 ,  we briefly recall the Poincare 
representation of light polarization on the unit sphere [ 8 ] .  In 4 3, wc calculate how the 
polarization of the light rotates when it crosses the TIC. We shall show that the TI<' 
possesses a true rotatory power only for particular values of the electric field and the 
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2001.' 
Figure 1. Two different textures (fingers and TIC) observed between crossed polarizers fo th 

mixture ZLI2806+S811. C=O.895. (a) 1.1 V, (b) 1.4V, (c )  2.0V, ( d )  2.2V and (e) 2.7V. 

0.2 0.4 0.6 0.8 1 .o  
C = d l p  

Figure 2. Simplified experimental phase diagram for ZLI 2806 + S8 11 (from [6]).  Point A is a 
triple point where the TIC, the nematic and the fingers coexist. Between A and B the 
nematic-finger transition is second order, whereas it is first order to the right of B: point B 
is thus a Landau tricritical point. 
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206 P. Ribikre et al. 

sample thickness. In $4, we calculate the optical contrast of the fingers when they are 
observed between crossed polarizers. All of these results will be compared with our 
observations through the microscope. For simplicity, we shall only consider the case 
where light propagates perpendicularly to the glass plates bounding the sample 
(normal illumination). 

2. Representation of the light polarization on the PoincarC sphere 
We consider a monochromatic planar elliptically polarized wave propagating 

along the z axis in a one-dimensional birefringent medium i.e. translationally invariant 
in the x,y-plane perpendicular to z. Since 

div D = 0, (1) 

one gets D, = 0. In general, the E,  component does not vanish, except if the medium is 
isotropic. Nevertheless, it is possible to calculate E ,  from E x  and E,, using equation (1) 
and the constitutive relation 

D = E E  (2) 

The end of the E component perpendicular to z traces an elliptical path as a function of 
time 

Ex = cos ,4 cos 8 cos wt - sin ,4 sin 8 sin at, 

In (3), 9 is the polarization angle between the x axis and the p axis (see figure 3), while the 
angle A characterizes the ellipticity of the polarization. The multiplicative constant is 
omitted. If A = nn or A = n/2 + nz, n E Z, the light is linearly polarized, whereas it is 
circularly polarized when I = 7114 + nn/2. 

On the unit sphere S' (usually called the PoincarC sphere), let us consider the point 
M defined by its longitude 29 and its latitude 2A (see figure 4). Set u =OM. There is a 
one-to-one correspondence between the PoincarC sphere and the set of all possible 
vibrations. It is therefore convenient to describe the different vibrations by points on 
S 2 .  Note that the poles of the sphere correspond to (left or right) circularly polarized 
vibrations, while the equator corresponds to linear vibrations. 

E,  = cos 2 sin 9 cos wt + sin A cos 0 sin ot. (3) 

Figure 3. The two angles d and 0 characterizing an elliptically polarized planar wave. 
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Frustrated cholesteric liquid crystals 207 

“t 

Figure 4. Representation on the PoincarC sphere of an elliptically polarized vibration (point 
M ) .  Instead of angles (28,2;1), one can choose angles ($,2p) to parameterize the light 
polarization on the sphere. 

Let 2p be the angle between ex and u and @ the angle of the dihedron formed by the 
equatorial plane and the plane containing ex and point M (see figure 4). It is easy to 
show that the electric field can be written in the form: 

Ex = cos p cos o t ,  

E,  = sin p cos (cot - $). 
(4) 

3. Rotatory power of the TIC 
In this section, we use some elementary properties of the Poincare sphere to 

calculate the evolution of the electric field E through a TIC. Because this medium is 
one-dimensional and locally birefringent, it is convenient to replace it by a packing of 
thin, parallel, homogeneous slices perpendicular to the z axis. The conservation of the 
component of the electric field E parallel to the slices justifies this procedure. 

3.1. Evolution of the light polarization in a single homogeneous birefringent slice 
At the entrance of the slice, at z=O, the electric field is (4) 

Ex = cos p cos o t ,  

E,  = sin p cos ( o t  - $). 

If the extinction directions of the slice are along x and y ,  a phase shift A$ appears 
between Ex and E ,  and, after crossing the slice, the electric field becomes 

E x  = cos p cos o t ,  

E ,  = sin p cos (wt - @ -A$). 
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208 P. Ribikre et al. 

Consequently, the birefringent slice rotates the point M that represents the vibration on 
S 2  by an angle of A 4  around the .x axis. The corresponding operator is the rotation 
matrix 

0 0 
B&= 0 cosAq5 -sinAq5 . [ 1 sinAq5 cos Ad] 

Suppose now that the extinction directions ofthe slice make an angle 0 in the x, y-plane 
with the x and y axes. The operator describing the motion of M on the Poincare sphere 
is given by the matrix 

B:4 = R,,B&R - 2e 
1 - sin2 20( 1 - cos A+) 

sin 2 0  cos 2 0 (  1 - cos Ag5) 
- sin 2 0  sin Aq5 

sin 2 0  cos 20(  I - cos Ad) 
1 - cos’ 2 0 (  1 - cos Aq5) 

cos 2 0  sin Ad 

sin 2 0  sin A 4  
- cos 2 0  sin Aq5 

cos Aq5 

= i 
where R 2 ,  describes a rotation of angle 2 0  around the z axis. The matrix B& 
corresponds to a rotation of angle Aq5 around the unit vector v = (cos 2 0 ,  sin 20,O). 

In the limit of an infinitely thin slice of thickness dz, the vector u = OM becomes 
u + du after the light has crossed the slice with 

du=vr\udq5, (8) 
where d+ is the phase shift between Ex and E,. 

3.2. One-dimensional medium 
3.2.1. General points 

A one-dimensional medium can be described by the stacking-up of such birefring- 
cnt homogeneous slices. Since the product of two rotations is a rotation, the operator 
describing the change of polarization of a light beam propagating across a one- 
dimensional medium is a rotation 191. Contrary to the previous case of a homogeneous 
birefringent medium, the axis of the rotation is no longer necessarily in the equatorial 
plane of the Poincare sphere. Nevertheless, it is always possible to factor this rotation 
into two successive rotations whose axes are respectively in the equatorial plane 
(homogeneous birefringent medium) and along the pole axis (medium with a pure 
rotatory power). A one-dimensional medium can thus always be described as the 
superposition of a homogeneous birefringent medium and a medium with a pure 
rotatory power. This second fictitious medium rotates all the vibrations by an angle A%, 
independently of their initial polarization. The angle A0 is thus characteristic of the 
one-dimensional medium. It can be obtained by a simple geometrical construction on 
the Poincare sphere (see figure 5) by considering the image of the equator under the 
rotation operator associated with the real medium. This image is a great circle which 
intersects the equator at two opposite points P ,  and P, .  These points are the images of 
two particular points M ,  and M ,  corresponding to vibrations that are linearly 
polarized in two perpendicular directions of the real space. It is possible to show that A% 
is equal to the half-angle between OP, and OM, (or between OP, and OM,). We 
choose A0 positive if the medium is ctextrorotatory (Pasteur’s convention). We shall 
determine this quantity in the following. 
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cos qz 
sinqz (9) 

0 

A Pole axis I 

v 

Figure 5. Poincare sphere representation of the existence of two orthogonal positions of the 
polarizer for which the light emerging from the one-dimensional medium is still linearly 
polarized and can be extinguished with an analyser. The angle between the polarizer and 
the analyser for which we get complete extinction is 7rj2 + AO. 

cos 2qz 
sin292 (10) 

0 

In conclusion, there exist two particular orientations of the polarizer (correspond- 
ing to points MI and M ,  on the sphere) for which the light emerging from the medium is 
still linearly polarized (points P I  and P ,  on the sphere). Under these conditions, it is 
possible, by use of the analyser of the microscope, to obtain optical extinction of the 
sample. 

271 d 4 =  -An-dz. 
All 
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210 P. Ribiere et al. 

Our purpose in this sub-section is to show that there exist particular thicknesses for 
which the sample has a true rotatory power. In order to show this property, let us first 
describe two particular and independent solutions of equation 8. 

The first solution was found by Mauguin [l]. It describes the evolution of the 
polarization in the Poincark sphere, when the incident beam is linearly polarized along 
an extinction direction at z=O (for instance parallel to the molecules). This initial 
polarization is represented by the point A on the sphere such that OA = e,. Let B be the 
point corresponding to the extinction direction parallel to the molecules at z = d.  The 
point M giving the evolution of the light polarization across the sample is fixed on a 
cone that rolls without gliding on the equatorial plane from OA to OB. This point is 
identical with A at the input of the medium ( z  = 0). The half-aperture angle of this cone 
R depends on the birefringence An, on the cholesteric pitch p, and on the wavelength Lo 

2 Lo 
An P 

tan R =  - --. 

A second particular solution to this problem is (equations (8), (10) and (11)): 

u = cos Rv + sin Re, (13) 

In this case, point M describes a circle parallel to the equator on the sphere. The 
polarization at z = 0 is no longer rectilinear and is represented by the point A' on the 
sphere such that OA' is in the plane containing OA and the pole axis. 

We show now that if the sample thickness is a multiple of (p/2)  sinR, any initial 
linearly polarized vibration remains linearly polarized after traversing the sample, 
which means that the sample has a pure rotatory power. 

Let us first consider the Mauguin solution. If d = (p/2) sin R, the Mauguin cone spins 
exactly once upon itself. Since the initial vibration is polarized along an extinction 
direction, the emerging vibration at z = d = ( p / 2 )  sin R is also linearly polarized, which 
means that its representative point on the Poincare sphere has rotated by an angle 
271 sin R around the pole axis. Let us now consider the second particular solution given 
by equation 13 (independent of the previous one). In this case, the point M representing 
the polarization on the Poincare sphere rotates between z = O  and z=d  =(p/2)  sin R of 
the angle 271 sin R around the pole axis, as in the previous case. Consequently, the effect 
of a sample of thickness m(p/2) sin 0 ,  mE N on any light polarization is a rotation by an 
angle 271m sin !2 (mod 271) around the pole axis. That means that an incident linearly 
polarized beam remains linearly polarized after crossing the sample which therefore 
has a true rotatory power. 

We shall speak about an extinction point each time this property is satisfied, because 
it is then possible to obtain optical extinction of the sample with the analyser for any 
position of the polarizer. These extinction conditions are optimal for measuring the 
angle of rotation of the polarization. 

3.2.3. Generalization to the TIC 
In this sub-section, we explain the method by which the TIC is calculated and we 

show how to determine the angle ofrotation of light polarization. In particular, we shall 
show that the extinction points are not specific to free cholesterics, but can also be 
observed in a TIC. 
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Frustrated cholesteric liquid crystals 21 1 

n 

n, = sin a(z) sin B(z) 

n, = cos ~ ( z )  

n,, = sin a(z) cos p(z) (14) 

di(KI2 sin’ a+ K3, cos2 a) +(K, ,  - K 3 2 ) ~ ’  sin a cos a 

= 4~ I/’ sin a cos a + 2 ( 2 ~  + sin2 ab) sin a cos aiJ 

+ l j 2 ~ 3 ~ s i n ~ c o s ~ ( ~ o s 2 ~ - s i n 2 ~ )  

v 

and 

- cos 28 
sin28 (17) 

0 

2 c  
sin’ a + K,, cos’ a’ 

p= - 

with 

The boundary conditions of strong homeotropic anchoring impose a(0) = a(d) = 0. It is 
obvious from equation (16) that the structure of the TIC tends to that of the free 
cholesteric previously described when V-+ + co. From these results, it is possible to 
show that the TIC-nematic transition is second order when 

and 

with 

271 
dq5 =-(no - n’(a))dz, 

1 0  

neno 

[n,2+(n,Z-n,2)sinza]’/’’ 
n‘(a) = 
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212 P. Ribiere et al. 

u 

cos 21 cos 20 
cos2Asin20 (19) 

sin 21 

Using expressions (8), (17) and (1 8), we obtain the system of equations 

(no - n'(a)) sin (20 + 2p). d(2d) 2n 
3," 

.-= ___  

with the initial conditions U (z = 0) = 0,, 3, (z = 0) = 0, which correspond to an incident 
linearly polarized vibration, the system (20) has a single solution (0(z, O,), d(z, 6,)). Set 
u, = cos 28,e, + sin 2U,ey. To know the output polarization at  z = d for any value of 0,, 
it is sufficient to solve equation (20) for two particular values of 0,, for instance 0, = O  
and 0, = n/4. This is due to the fact that the rotation R describing the action of the TIC 
on the light polarization is a linear operator so that R(u,) =cos 20,R(e,) + sin 2H,R(ey). 
This relation can be rewritten in the form: 

sin 24d, 8,) = sin 24d, 0) cos 20, + sin 23, 

cos 23,(d, 6,) cos 20(d, 8,) = cos 21(d, 0) cos 20(d, 0) cos 20, 

+cos21 d,- cos26 d , -  sin20, ( 3 ( 3 
I cos 23,(d, 0,) sin 20(d, 0,) = cos 24d, 0) sin 28(d, 0) cos 28, 

+cos2A d,- sin20 d,- sin26, ( 3 ( 3 
The values 8, and 8, + n/2 of the angle 0, corresponding to the points M ,  and M 2  
introduced in the beginning of this subsection (see also figure 4) can be obtained by 
setting 3,(d,0)=0 in equation (21). This gives 

sin 24d, 0) 
sin 23,(d, n/4)' 

tan No = - 

In these two particular cases of initial polarization (given by MI and M ,  on the sphere), 
the light is still linearly polarized after it has crossed the TIC. The angle of rotation of 
the polarization, measurable experimentally when the incident beam is polarized along 
M I  or M ,  on the sphere, and defined to be 

A0 = 8, - O(d, 8,) (23) 
can then be calculated from equation (21) and (22). 

We can also determine the extinction points by solving the equations 1(d, 0) 
= A(d, n/2) = 0 as a function of the experimental parameters d and V, Under these special 
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Frustrated cholesteric liquid crystals 213 

conditions, the light is always linearly polarized at the output of the TIC, independently 
of the initial polarization. Furthermore, the angle of rotation of polarization is 
independent of the initial polarization, which means that the medium has a true 
rotatory power. 

3.3. Numerical results 
We have chosen as numerical parameters 

K , , =  1.97, 
A =  -0.138 V-2, 
n,= 1.5183, 

n, -no = 0.0437. 

These values, given E. Merck correspond to the left-handed mixture described in the 
introduction and used in [6]. The quiescent cholesteric pitch of this mixture is equal to 
15.7pm and was measured by the Cano-wedge method. We evaluated K , ,  in [6] by 
fitting the experimental phase diagram with the theoretical one. We found K , ,  !z 1.62. 
The wavelength of the green filter chosen is I ,  = 546 nm. 

These data allow us to calculate the angle of rotation A0 of the polarization in a TIC 
as a function of C and V. The calculations were done for small sample thickness 
(C 6 0.6), when the TIC-homeotropic nematic phase transition is second order (see the 
phase diagram of figure 1). The TIC is always found numerically to be laevorotatory 
(according to the usual optics conventions), which means that the electric field rotates 
in the sense opposite to that of the cholesteric helix. In figure 6, we plotted the angle ]A81 
characterizing the optical activity of the TIC as a function of C and I/. For each value of 

0 . 8 1  

4 0  

0.6 

30  
73 m k L --. 

0.4 
2 0 2  

m 
Q 

0.2 
10  

0.0 0 

0 5 1 0  1 5  2 0  
Voltage JV 

Figure 6. Rotation angle of the polarization A0 versus the applied voltage for different sample 
thicknesses. From the top to the bottom, C =0.65, 06,  055,  0.5, 0.45, 0.4 and 0.35. The 
extinction points (represented by solid diamonds) correspond from left to right to C = 0.65, 
0.6,0.55,0.5. (-), numerical calculation; (. . .), numerical calculation at infinite voltage. 
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214 P. Ribiere et al. 

C, IA6l tends asymptotically towards a finite value which corresponds to the limiting 
case of the free cholesteric phase. We have also plotted on the curves of figure 6 the 
positions of the extinction points found numerically at C 3 0.5. 

In order to test the accuracy of our numerics, we have calculated the value of A 6  at 
the extinction point for a free cholesteric. The values we have found, C = 0.423 and IA6l 
= 0.482 rad, are in excellent agreement with those given by an analytical calculation 

2 Al 
An P 

C=$sinR, (A6(=27c(1 -sinR) and tanfi=- -. 

It is important to note that this value of A 6  is different from that given by the classic 
formula of de Vries. This difference is due to the fact that the classic formula is only 
applicable when (Anp/&)<< 1, whereas, in our experiment, this quantity equals 1.26. 

3.4. Experimental results 
Our experimental set up has been described in [6] and [12]. The mixture, the 

temperature chosen (30°C), and the frequency of the applied square-wave AC voltage 
(5 kHz) were the same as in [6]. We used a green interference filter (546 nm) to perform 
all the measurements. 

We measured the angle of rotation of the polarization A6, by looking for one of the 
two particular positions of the polarizer and of the analyser for which the TIC is 
completely dark. In fact, this extinction is rarely observed across a large surface area, 
because the molecular tilt direction can vary spatially in the sample plane. This effect 

0.6 ! t 40  

0 5 1 0  1 5  2 0  
Voltage IV 

Figure 7. Rotation angle of the polarization A8 versus the applied voltage for different sample 
thicknesses: experimental results. From top to bottom: ((---), C = 0.625; (-.-.-.), G 

C=0.365; (.-.-.- ), C =0.320. The extinction points (represented by solid diamonds) 
correspond from left to right to C=O.625, 0.6, 0.56, 0512  and 0.663. 

=0'6OO, (-), C =0'56O; (. . .. . . .), C ~0 .512 ;  (- - - - -); C = 0.463; (-), Cz0.413; (----), 
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Frustrated cholesteric liquid crystals 215 

and the difficulty of finding the positions of the polarizers for which the local extinction 
is most complete lead to an uncertainty in the A€' measurement of about one degree. On 
the other hand, it is sometimes possible to obtain perfect extinction over the whole 
sample area, even when the TIC is inhomogeneous. These peculiar experimental 
conditions correspond to the extinction points predicted theoretically (see (j 3.2). 

In figure 7, we plotted A0 as a function of the voltage I/ for different thicknesses. We 
also indicated the positions of the extinction points. We find that the TIC is 
laevorotatory and that the angle of rotation increases with the thickness and the 
voltage. All these results are in good agreement with the numerical results of figure 6, in 
particular the positions of the extinction points. For instance, at C = 0.6 we measured 
V,,, = 3.60 V while the calculation gives V,,, = 3.70 V. Furthermore, we found experi- 
mentally that there is no extinction point when CGO.41, in very good agreement with 
the theory. Note that there is no adjustable parameter in our calculations. 
Consequently, our approximation that the electric field remains constant and 
perpendicular to the glass plates inside the sample seems rather good. 

We now extend our model to the cholesteric fingers in order to calculate their 
optical contrast between crossed polarizers. Our main motivation was to confirm the 
topological model used in [6]. 

4. Optical contrast of the cholesteric fingers 
4.1. Experimental results 

Figure 8 shows an array of parallel fingers at V=O photographed between crossed 
polarizers. In order to obtain a normal illumination, we removed the condenser of the 
microscope. In this case, the optical contrast of the fingers does not change as long as we 
focus inside the sample. This is due to the very small birefringence of the mixture chosen 
(An=0.0437) and to the fact that the deviation angle of the light across the sample is 
always negligible (less than 2" in our samples [Ill).  In figure 9(a), we reported 
measurements of the intensity profile along the normal to the finger axis, when the 
polarizer and the analyser are perpendicular. These profiles are symmetrical when the 
finger axis makes an angle of O", 45" or 90" with the polarizer and asymmetrical 
otherwise. In this figure, we have normalized the light intensity: the value 0 (resp. 1) 
corresponds to the intensity of the homeotropic nematic phase observed between 
crossed polarizers (resp. between parallel polarizers). 

We also observed that it was always possible to extinguish locally the fingers by 
decrossing the polarizer and the analyser. This allowed us to measure the local rotation 
angle of the polarization A€' along the normal to the finger axis (figure lO(a)). This 
property of the fingers shows that they behave at each point as a one-dimensional 
medium and comes from the fact that the light is not strongly deviated inside the 
sample. 

4.2. Director jield inside a finger 
In [6], we proposed that the director field inside the fingers should be decreased by 

n,=cos fl sin y sin ky-cos CI sin fl sin y cos ky + sin c1 sin fl cos y 

n,,= -sin fl sin y sin k y  -cosa cos f l  sin y cos ky + sin c1 cos f l  cos y (24) 
n, = sin CI sin y cos ky+ cos CI cosy 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
5
2
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



216 P. Ribiire et L I I .  

where k is the wavevector ( k  = 2n / /A  and A is the finger width) and a, j?, y are three 
angles such that 

x(z =O)= n(z = d ) = O  

y ( z  =O)=  y ( z  = d )  =o 

These conditions ensure homcotropic anchoring on the glass plates. The x axis is 
assumed to be parallel to the finger axis while the y axis is perpendicular to it. Formula 
(24) describes the nematic when cx = y = 0, the TIC when CY # 0 and y = 0, and the fingers 
(herc considered as a periodic modulation of the TIC) when CI and y are both different 
from 0. The case a= y # O  corresponds to fingers separated by the horneotropic nematic 
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1 0 0 p m  

Figure 8. Parallcl fingers photographcd between crossed polarizers. Their contrast changes 
when the sample is turned around the optical axis of the microscope. (C= 1.15, V=OV). 
The angles between the finger axis and the polarizer are (a) On, (b) 20", (c) 45", ( d )  70" and 
( P )  90". 

phase. By minimizing the free energy (15) with respect to a, fl and y. it was possible to 
show that the solution can be written in the form [ 6 ]  

a= cq, sin Z I 

y =  y o  sin Z 1 
with 2 = nz/d. These formulae are only exact in the vicinity of the critical line when the 
transition is second order, i.e. between points A arid B in phase diagram of figure 2. 
Nevertheless, we assumed in [6]  that they could still be used far from this line. In this 
case, it was possible to calculate the energy per unit surface area of the sample and to 
minimize it with respect to k and to (cc,,,~,). which plays the role of a two-dimensional 
order parameter. In this way, it was possible to establish a theoretical phase diagram in 
satisfactory agreement with the experimental one. 

In order to test the validity of this theoretical approach, we have calculated the 
optical contrast of the fingers when they are observed between crossed polarizers as 
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k Yo 

1 . o  
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g 0 . 5  
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+ 
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0 . 0  

50.5 
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0.0 

Figure 9. (a) Experimental (C= 1.15, V=OV) and (b) theoretical (C= 1.13, V=OV) intensity 
profiles IL( yo). From top to bottom, the angle between the polarizer and the finger axis 
successively equals 70", 45", 20" and 0". 
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70 

k Yo 

(b) 

angle of the polarization A@ versus yo. 
Figure 10. (a) Experimental (C= 1.15, V=OV) and (b)  theoretical ( C =  1.13, V=OV) rotation 

well as their local rotatory power. We have used the director field (24)-(26) and the 
values of (a,,y,) which minimize the free energy. In the following sub-section, we 
explain the details of these calculations. 

4.3. Calculations of the optical contrast between crossed polarizers and of the rotation 
angle of the polarization A 0  

The previous model used to calculate the optical properties of the TIC is, a priori, 
not immediately applicable to the fingers, because these solutions are not one- 
dimensional. Indeed, the horizontal index variations induce deviations of the light rays. 
The thicker and more birefringent the sample, the more important the deviations are. 
Taking this effect into account is very difficult, and we did not attempt to do that. On 
the other hand, we have observed experimentally that the deviations are very small. 
This is due to the fact that the quantity AndIA (where A is the finger width), which 
measures the maximum deviation angle, is always much smaller than 1. 

Consequently, one can consider a finger to be a pile of thin slices perpendicular to 
the glass plates and parallel to the finger axis, in which the rays propagate without 
deviation as they would do in the corresponding one-dimensional medium. 

More precisely, let us consider a slice of coordinate yo. Along the line (parallel to the 
finger axis), the behaviour is that of a one-dimensional medium in which the director 
field is 

n(z) = nfinger(y0, Z )  (27) 
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where nfingcr is given by equation (24) (26). In order to calculate the polarization of the 
light after it has crossed the slice, we solve equation (20) numerically by using a Runge- 
Kutta method with the initial conditions: O(z =O)= O,, E,(z = 0) =O. These conditions 
correspond to an incident vibration linearly polarized at an angle 8, with the finger 
axis. This polarization is represented on the sphere by a vector u,. Let us call ud(y,) the 
unit vector represcnting the polarization of the light on the Poincark sphere at the 
output of the medium: the transmitted intensity I, between crossed polarizers is 

z l ( Y O ) =  Id1 - ' ud(yO)), (28) 

z ~ ~ ( Y O ) = l O ( l  't uOud(YO)). (29) 

where I ,  is a constant. If the polarizers are parallel, one calculates in the same way 

Consequently, one must take I ,  = 1 /2 in keeping with the normalization of the intensity 
chosen in the experimental part (see $4.1). 

In figure 9 (h), we have plotted the calculated intensity profiles between crossed 
polarizers for different values of the angle 0, between the polarizer and the finger axis. 
These profiles have been calculated by assuming a, = y o  (the sides of the fingers are 
homcotropic) and by looking for the values of C and a, for which the intensity in the 
middle of the finger is the same as that measured experimentally when the finger makes 
angles of 0 and n/4 with the polarizer. This procedure gives C= 1.13 and a, = 1.12 rad 
and leads to profiles that are in satisfactory agreement with the experimental ones (see 
figure 9). This value of C is in good agreement with the experimental one: C = 1.1 5. By 
contrast, the value of a, is 30 per cent larger than that we have obtained after 
minimization of the free energy: a, (theory) = 0.85 rad. 

The same model can be used for calculating the rotation angle of the polarization 
Ad as a function of coordinate yo. The corresponding theoretical curve is plotted in 
figure 10(h) by taking the same values C= 1.13 and a,= 1.12 rad as previously. This 
curve has the same shape as that measured experimentally, but predicts maximal values 
of Ad that are too large by about 30 per cent. This disagreement is not however 
surprising in view of the numerous approximations we have made. 

5. Conclusion 
We have studied the optical properties of the two classical textures observed for thin 

samples of a cholesteric liquid crystal of negative dielectric anisotropy submitted to 
homeotropic anchoring and to an electric field. 

The first solution (TIC) is translationally invariant in the sample plane and rotates 
the light polarization. Using the PoincarC sphere, we have calculated the rotatory 
power of the TIC. In general, this quantity is only defined for two orthogonal directions 
of the polarizer. Nevertheless, if the sample is sufficiently thick, there exist particular 
values of the applied voltage for which the sample has a true rotatory power. In these 
conditions, called extinction points, it is possible to obtain complete extinction of the 
sample with the analyser, whatever the position of the polarizer. All these theoretical 
predictions have been verified experimentally. The agreement between theory and 
experiment is excellent in spite of the assumption that the electric field is constant 
throughout the sample. We also emphasize that there is no adjustable parameter in our 
model. 

We have then tried to extend our optical model to the case of the fingers. 
Calculations are much more complicated in this case and much less precise, because we 
do not know the exact director field inside a finger. Thus, calculations were done by 
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using the topological model of [6 ]  which assumes that the fingers have no singularity 
inside and can be constructed from a continuous modulation of the TIC. We also 
assumed that the rays do  not deviate within the finger, which limited our calculations to 
the case where And/A<< 1, i.e. in practice An<< 1. This condition was fulfilled in our 
experiment. In order to obtain direct comparison with experiment, we calculated the 
optical contrast of the fingers between crossed polarizers as well as their local rotatory 
power. The intensity profiles that we found for different positions of the polarizers with 
respect to the finger axis and the curve of the rotatory power are in good qualitative 
agreement with experiment. 

This work was supported by DRET Contract No. 92/1313/DS/SR. 
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